
Bitcode Demystified Low Level Bits

A few months ago Apple announced a 'new feature,' called Bitcode. In this
article, I will try to answer the questions like what is Bitcode, what problems it
aims to solve, what issues it introduces and so on.

What is Bitcode?

To answer this question let's look at what compilers do for us. Here is a brief
overview of compilation process:

• Lexer: takes source code as an input and translates it into a stream of tokens;
• Parser: takes stream of tokens as an input and translates it into an AST;
• Semantic Analysis: takes an AST as an input, checks if a program is correct

(method called with correct amount of parameters, method called on object
actually exists and non-private, etc.), fills in 'missing types' (e.g.: let x = y,
x has type of y) and passes AST to the next phase;

• Code Generation: takes an AST as an input and emits some high-level IR
(intermediate representation);

• Optimization: takes IR, makes optimizations and emits IR which is potentially
faster and/or smaller;

• AsmPrinter: another code generation phase, it takes IR and emits assembly
for particular CPU;

• Assembler: takes assembly and converts it into an object code (stream of 0s
and 1s);

• Linker: usually programs refer to already compiled routines from other
programs (e.g.: printf) to avoid recompilation of the same code over and
over. Until this phase these links do not have correct addresses, they are just
placeholders. Linker's job is to resolve those placeholders so that they point
to the correct addresses of their corresponding routines.

You can find more details here: The Compiler.

In the modern world these phases are split into two parts: compiler frontend
(lexer, parser, semantic analysis, code generation) and compiler backend
(optimization, asm printer, assembler, linker). This separation makes much sense
for both language designers and hardware manufacturers. If you want to create
a new programming language you 'just' need to implement a frontend, and you
get all available optimizations and support of different CPUs for free. On the
other hand, if you created a new chip, you 'just' need to extend the backend and
you get all the available languages (frontends) support for your CPU.

https://lowlevelbits.org/bitcode-demystified/ of 1 7

https://lowlevelbits.org/bitcode-demystified/
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://www.objc.io/issues/6-build-tools/compiler/

Bitcode Demystified Low Level Bits

Below you can see a picture that illustrates compilation process using Clang and
LLVM:

This picture clearly demonstrates how communication between frontend and
backend is done using IR, LLVM has it is own format, that can be encoded using
LLVM bitstream file format - Bitcode.

Just to recall it explicitly - Bitcode is a bitstream representation of LLVM IR.

https://lowlevelbits.org/bitcode-demystified/ of 2 7

http://llvm.org/docs/LangRef.html
http://llvm.org/docs/BitCodeFormat.html
https://lowlevelbits.org/bitcode-demystified/

Bitcode Demystified Low Level Bits

What problems Apple's Bitcode aims to solve?

Again, we need to dive a bit deeper and look at how an OS runs programs. This
description is not precise and is given just to illustrate the process. For more
details I can recommend reading this article: How OS X Executes Applications.

OS X and iOS can run on different CPUs (i386, x86_64, arm, arm64, etc.), if you
want to run a program on any OS X/iOS setup, then the program should contain
object code for each platform. Here is how a binary might look like:

When you run a program, OS reads the 'Table Of Contents' and looks for a slice
corresponding to the OS CPU.

For instance, if you run operating system on x86_64, then OS will load object
code for x86_64 into a memory and run the program.

What's happening with other slices? Nothing, they just waste your disk space.

This is the problem Apple wants to solve: currently, all the apps on the AppStore
contain object code for arm and arm64 CPUs. Moreover, third-party proprietary
libraries or frameworks contain object code for i386, x86_64, arm and arm64, so
you can use them to test the app on a device or simulator. (Can you imagine
how many copies of Google Analytics for i386 you have in your pocket?)

UPD: I do not know why, but I was sure that final executable contains these
slices as well (i386, x86_64, etc.), but it seems they are stripped during the build
phase.

https://lowlevelbits.org/bitcode-demystified/ of 3 7

https://lowlevelbits.org/bitcode-demystified/
http://0xfe.blogspot.de/2006/03/how-os-x-executes-applications.html

Bitcode Demystified Low Level Bits

Apple did not give us that many details about how the Bitcode and App Thinning
works, so let me assume how it may look:

When you submit an app (including Bitcode) Apple's 'BlackBox' recompiles it for
each supported platform and drops any 'useless' object code, so AppStore has a
copy of the app for each CPU. When an end user wants to install the app - she
installs the only version for the particular processor, without any unused stuff.

Bitcode might save up to 50% of disk space per program.

UPD: Of course, I do not take in count resources, it is just about binary itself. For
instance, an app I am working on currently has size ~40 megabytes (including
assets, xibs. fonts), a size of a binary itself is ~16 megabytes. I checked sizes of
each slice: ~7MB for armv7 and 9MB for arm64, if we crop just one of them, it will
decrease the size of the app by ~20%.

What problems does Bitcode introduce?

The idea of Bitcode and recompiling for each platform looks really great, and it is
a huge improvement, though it has downsides as well: the biggest one is
security.

To get the benefits of Bitcode, you should submit your app including Bitcode
(surprisingly). If you use some proprietary third-party library, then it also should
contain Bitcode, hence as a maintainer of a proprietary library, you should
distribute the library with Bitcode.

To recall: Bitcode is just another form of LLVM IR.

https://lowlevelbits.org/bitcode-demystified/ of 4 7

https://lowlevelbits.org/bitcode-demystified/

Bitcode Demystified Low Level Bits

LLVM IR

Let's write some code to see LLVM IR in action.

 // main.c

 extern int printf(const char *fmt, ...);

 int main() {

 printf("Hello World\n");

 return 0;

 }

Run the following:

 clang -S -emit-llvm main.c

And you'll have `main.ll` containing IR:

 @.str = private unnamed_addr constant \

 [13 x i8] c"Hello World\0A\00", align 1

 ; Function Attrs: nounwind ssp uwtable

 define i32 @main() {

 %1 = alloca i32, align 4

 store i32 0, i32* %1

 %2 = call i32 (i8*, ...)* \

 @printf(i8* getelementptr inbounds \

 ([13 x i8]* @.str, i32 0, i32 0))

 ret i32 0

 }

 declare i32 @printf(i8*, ...)

What can we see here? It is a bit more verbose than original C code, but it is still
much more readable than assembler. Malefactors will be much happier to work
with this representation, than with disassembled version of a binary (and they
do not even have to pay for tools such Hopper or IDA).

https://lowlevelbits.org/bitcode-demystified/ of 5 7

https://lowlevelbits.org/bitcode-demystified/

Bitcode Demystified Low Level Bits

How could malefactor get the IR?

iOS and OS X executables have their own format - Mach-O (read Parsing Mach-O
files for more details). Mach-O file contains several segments such as Read-Only
Data, Code, Symbol Table, etc. One of those sections contain xar archive with
Bitcode:

It is really easy to retrieve it automatically, here I wrote a simple C program that
does just that: bitcode_retriever. The workflow is pretty straightforward. Let's
assume that some_binary is a Mach-O file that contains object code for two CPUs
(arm and x86_64), and each object code is built using two source files:

 $ bitcode_retriever some_binary

 arm.xar

 x86_64.xar

 $ xar -xvf arm.xar

 1

 2

 $ llvm-dis 1 # outputs 1.ll

 $ llvm-dis 2 # outputs 2.ll

Bitcode does not store any information about original filenames but uses
numbers instead (1, 2, 3, etc.).

Also, probably you do not have llvm-dis installed/built on your machine, but
you can easily obtain it, see this article for more details: Getting Started with
Clang/LLVM on OS X.

Another potential issue (can't confirm it) - Bitcode thingie works only for iOS 9,
so if you submit your app to the AppStore and it includes Bitcode, then
malefactor can get the whole IR from your app using iOS 7/8 and jailbroken
device.

I know only one way to secure the IR - obfuscation. This task is not trivial itself,
and it requires even much more efforts if you want to introduce this phase into
your Xcode-Driven development flow.

https://lowlevelbits.org/bitcode-demystified/ of 6 7

http://lowlevelbits.org/parse-mach-o-files/
http://lowlevelbits.org/parse-mach-o-files/
https://en.wikipedia.org/wiki/Xar_%28archiver%29
https://github.com/AlexDenisov/bitcode_retriever
https://lowlevelbits.org/getting-started-with-llvm-slash-clang-on-os-x/
https://lowlevelbits.org/getting-started-with-llvm-slash-clang-on-os-x/
https://en.wikipedia.org/wiki/Obfuscation_(software)
https://lowlevelbits.org/bitcode-demystified/

Bitcode Demystified Low Level Bits

Summary

• Bitcode is a bitstream file format for LLVM IR

• one of its goals is to decrease a size of an app by eliminating unused object
code

• malefactor can obtain your app or library, retrieve the IR from it and steal
your 'secret algorithm.'

Useful links

• LLVM IR- language reference manual
• LLVM Bitcode - Bitcode file format
• The Compiler - Clang/LLVM compilation phases
• How OS X Executes Applications
• Parsing Mach-O files
• bitcode_retriever - tool that retrieves xar-archives with bitcode from mach-o

binary
• o-llvm - obfuscator based on LLVM

https://lowlevelbits.org/bitcode-demystified/ of 7 7

https://lowlevelbits.org/bitcode-demystified/
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/BitCodeFormat.html
https://www.objc.io/issues/6-build-tools/compiler/
http://0xfe.blogspot.de/2006/03/how-os-x-executes-applications.html
http://lowlevelbits.org/parse-mach-o-files/
https://github.com/AlexDenisov/bitcode_retriever
https://github.com/obfuscator-llvm/obfuscator/wiki

