
Mull it over: mutation testing based on LLVM
Alex Denisov

Independent researcher
Berlin, Germany

Email: alex@lowlevelbits.org

Stanislav Pankevich
Independent researcher

Berlin, Germany
Email: s.pankevich@gmail.com

Abstract—This paper describes Mull, an open-source tool for
mutation testing based on the LLVM framework. Mull works
with LLVM IR, a low-level intermediate representation, to per-
form mutations, and uses LLVM JIT for just-in-time compilation.
This design choice enables the following two capabilities of Mull:
language independence and fine-grained control over compilation
and execution of a tested program and its mutations. Mull
can work with code written in any programming language that
supports compilation to LLVM IR, such as C, C++, Rust, or
Swift. Direct manipulation of LLVM IR allows Mull to do less
work to generate mutations: only modified fragments of IR code
are recompiled, and this results in faster processing of mutated
programs. To our knowledge, no existing mutation testing tool
provides these capabilities for compiled programming languages.
We describe the algorithm and implementation details of Mull,
highlight current limitations of Mull, and present the results of
our evaluation of Mull on real-world projects such as RODOS,
OpenSSL, LLVM.

Index Terms—mutation testing, llvm

I. INTRODUCTION

Mutation Testing, a fault-based software testing technique,
serves as a way to evaluate and improve quality of software
tests. A tool for mutation testing creates many slightly modi-
fied versions of original program and then runs a test suite
against each version, which is called a mutant. A mutant
is said to be killed if the test suite detects a change to the
program introduced by this mutant, or survived otherwise.
Each mutation of original program is created based on one of
the predefined rules for program modification called mutation
operators. Each mutant is represented by a mutation point: a
combination of mutation operator and location of a mutation
in the program’s source code. To assess the quality of a test
suite mutation testing uses a metric called mutation score, or
mutation coverage.

Mutation testing is getting interest from the open source
community. More and more open-source mutation testing
tools targeting various programming languages appear [1].
Unfortunately, not all of these tools reach a level of maturity
needed for practical use. While mature implementations of
open-source mutation testing tools definitely exist, with Pitest
[2] and Mutant [3] being strong examples from Java and
Ruby programming language communities, there is still a
lack of usable mutation testing tools for certain compiled
programming languages.

In this paper, we present the Mull project, our attempt to
build a general-purpose mutation testing tool targeting com-
piled languages. Mull is built on top of the LLVM compiler

framework [4]. It uses two components of LLVM: IR, its low-
level intermediate language, to perform mutations and JIT
for runtime compilation and execution of a tested program
and its mutated counterparts. LLVM IR is also referred to
as LLVM Bitcode or simply as bitcode. We use these terms
interchangeably.

We consider the following criteria important for a practical
implementation of mutation testing tool: the tool must be
fast, configurable and easy to set up and use. The tool
should allow smooth integration with build tools. The tool
should be ready for use in mutation testing analysis of real-
world production and open source projects. The tool should
implement a reasonable number of basic mutation operators
to enable the practical use of it in different domains such as
systems programming, application programming, algorithms
and mathematical computations.

Mull is built with all of the above criteria in mind. We
started Mull with a primary focus on C and C++, but due to
LLVM, Mull can work with any other programming language
that compiles to LLVM IR, such as Rust, Swift, Objective-C.
To add a language support one needs to implement adapters
to the test frameworks used by the programming language.

Mull is a command line tool. It takes a configuration file as
an input and produces an SQLite database with the results as
output. Configuration options include a list of tested program’s
bitcode files, a set of mutation operators, a test framework, and
a few other settings. The SQLite database contains information
that Mull gathers while running on a tested program, such as
tests, mutation points, mutants (killed or survived), and more.
As a command-line tool, Mull does not show mutation score or
mutation coverage. There is a separate program that generates
an HTML report from the SQLite file.

Mull’s source code is available online [5] under Apache
License, version 2.0 [6].

We organize the rest of the paper as follows. Section II
describes the algorithm of Mull. Section III then goes deeper
and describes what we consider the most interesting imple-
mentation details of Mull. Section IV describes the mutation
operators currently implemented in Mull. Section V describes
our evaluation of the open source projects: RODOS, OpenSSL,
LLVM. Section VI highlights the limitations of Mull. Section
VII discusses future work. Section VIII concludes the paper.

II. ALGORITHM

The following are the steps that Mull performs during a
session:

Step 1: Mull loads LLVM Bitcode into memory.
Step 2: Mull inserts instrumentation code into each func-

tion. This code is used to collect code coverage information.
We describe our approach to instrumentation in III.A.

Step 3: Mull compiles instrumented LLVM Bitcode to
machine code and prepares the machine code for execution
by LLVM JIT engine.

Step 4: In the LLVM IR code Mull finds the tests according
to a test framework specified in the configuration file.

Step 5: Mull runs each test using LLVM JIT engine and
collects code coverage information.

Step 6: Mull finds mutations in the LLVM IR code based
on a code coverage information collected for each test. A set
of mutation points is created.

Step 7: For each mutation point, Mull creates a mutant and
runs each test that can kill the mutant. For each mutant, only
part of bitcode is recompiled into machine code. We describe
our approach to runtime compilation in III.B.

Step 8: All information collected during the session is
written to the SQLite database. This is the final step. Mull
finishes its execution at this point.

III. IMPLEMENTATION

A. Instrumentation and Dynamic Call Tree

A typical program has many mutations, but not all of them
are reachable by the program’s tests. We use this fact to
reduce the number of mutants. To know which mutations are
reachable we thus need to know which code is reachable
from a test. To achieve this, we insert instrumentation into
each function and then run a test to gather code coverage
information. From this information, we construct a dynamic
call tree.

The purpose of the call tree is better illustrated by
example. Consider a function test_driver calling
function test which is calling functions testee1
and testee2. The call tree would look like the following:
test_driver -> test -> { testee1, testee2 }.
In this case the code being tested is inside of testee1 and
testee2. Therefore we can inject mutations only into the
subtrees of the test function.

The call tree adds more fine-grained control of the amount
of work via mutation distance. We can define a mutation
distance to be a distance from a test function to a function
with the actual mutation. If function A calls function B and
function B calls function C, then the distance between A and
C is 2. Mutation distance can be used to decrease the number
of mutations: Mull can ignore mutations that are too far from
a test function.

The instrumentation-based approach has an overhead, but
it is necessary to get the right code coverage information.
Initially, we used static code analysis to build the call tree:
Mull iterated through bitcode and followed call instructions to

build the tree. Unfortunately, a function is not always known
until runtime. Typical examples are C function pointers and
C++ virtual function calls. After a few failed attempts we
switched to the dynamic instrumentation. Thus the call tree
became dynamic call tree.

B. JIT and Runtime Compilation

To run a tested program, Mull needs to compile the bitcode
files into object files containing machine code and link them
together into executable, as any compiler would do. To accom-
plish this task Mull utilizes LLVM JIT engine. This approach
has a great advantage: compilation and linking happen in
memory. Thus there is no disk I/O overhead.

When it comes to mutation Mull performs it on a copy
of a single bitcode file, recompiles it and links together with
already compiled object files. Partial recompilation helps to
increase performance. It also helps to decrease memory usage:
mutated bitcode file can be disposed from memory right after
execution.

C. Sandboxing

Mutations can make the code behave in unexpected ways: to
crash, to timeout or to exit prematurely. We use a parent/child
process isolation to achieve a proper sandboxing of a tested
program.

Mull, which is a parent process, runs each test in a separate
child process. The fork system call is used to create a child
process, mmap system call is used to share memory between
the parent process and the child process.

Mull handles exit status of a child process according to the
following policy:

1) Normal execution (test has passed or failed): We use a
conventional exit code 227 to indicate if a test has run without
any issues. If child process exits with code 227, Mull knows
that a test has either succeeded or failed and that nothing
extraordinary like in one of the following cases has happened.

2) Timeout: Mutated code might never finish its execution
in a child process. To handle this case Mull sets an alarm in a
child process that exits with a conventional timeout code 239
after a certain time interval. We use ualarm function to set
the alarm.

3) Crash: Mutated code can crash with a child process
executing it. We use WIFSIGNALED() to detect a crash of
a child process.

4) Abnormal exit: Mutated code exits prematurely from a
child process and this does not let a test to finish. This scenario
is a reason for the existence of the custom exit code 227 from
the case 1) because Mull needs to distinguish between normal
exit and abnormal exit from a child process.

D. Dry Run

It is not known in advance how many mutations a project
has and how much time does it take Mull to run it. To
remove uncertainty, we introduce dry run mode. In this mode,
Mull collects information about mutations but does not run
tests against them. Therefore no partial recompilation and no
sandboxing are needed.

Additionally, Mull gives a pessimistic approximation of the
run time: it calculates how much time would be needed if
each mutant times out. Real execution time is lower than the
approximation, but it gives a good hint of expected run time.

E. Test Framework: plugin architecture

Mull can work with any test framework. The only require-
ment is that Mull can run a single test independently from the
other tests in a test suite.

Each test framework plugin consists of two components:
test finder and test runner. Mull uses test finder to find the
tests in a bitcode of a tested program, and it uses test runner
to run one test according to the calling conventions of a given
test framework.

Test finder takes all bitcode files as an input and gives back
a list of test functions. Examples: for SimpleTestFinder
a test is simply a C function whose name starts with
test, for GoogleTestFinder a search algorithm ex-
tracts the information about the test functions from
internal::MakeAndRegisterTestInfo registration
call of a GoogleTest framework.

Test runner runs one test and returns the result of its execu-
tion. Running a test can be as easy as calling a test function
and checking its return value: for SimpleTestRunner test
passes if its test function returns 1 and fails if it returns
0. For GoogleTest framework GoogleTestRunner has to
emulate the work of GoogleTest’s main() function: to run
one test GoogleTestRunner runs a test suite in a ”focused
mode” with a filter set to a name of this test’s function
(--gtest_filter=TestFunctionName).

Many projects have their custom test suites. Examples
are Musl, OpenSSL, glibc, openlibm. While it is possible
to create a dedicated pair of test finder and test runner
for each of these projects like OpenSSLTestFinder and
OpenSSLTestRunner, we created a general solution called
CustomTestFramework to enable testing of these projects.
To use CustomTestFramework with a given project one
has to provide the custom test definitions in a configuration
file. Here is an example for OpenSSL project:

test_framework: CustomTest
custom_tests:

- name: test_bio_enc_aes_128_cbc
method: test_bio_enc_aes_128_cbc
program: bio_enc_test
arguments: [test_bio_enc_aes_128_cbc]

In this case CustomTestFinder treats a function
called test_bio_enc_aes_128_cbc as a test, and
CustomTestRunner runs the program using specified ar-
guments.

F. Fail Fast mode

In the worst case a tested program with N tests and M
mutations requires N * M test runs. Mull has an option to
decrease the amount of test runs: fail fast mode. For example,
if a mutation is reached from 20 tests and the very first test

kills the mutant, then there is no need to run the remaining
19 tests. The fail fast mode is disabled by default and can be
enabled in the configuration file.

G. Caching

Mull uses JIT and Runtime Compilation for better perfor-
mance. However, sometimes it is faster to read object file from
disk than to compile it in memory from LLVM Bitcode. In
this regard, Mull supports on-disk cache. Before compiling a
bitcode file Mull attempts to get an object file from disk. If
there is none, then Mull compiles the bitcode file and saves
resulting object file on-disk for later usage. When Mull runs
next time, it can use an object file from the previous session.

To avoid a use of outdated object files, Mull encodes
checksum of original bitcode file into the name of a cached
object file. Object files for mutants also contain a unique
identifier of the mutation point.

IV. SUPPORTED MUTATION OPERATORS

Mull performs mutations on the LLVM IR code, so its
implementation of mutation operators is largely determined
by the specification of LLVM language and in particular its
Instruction Reference [7]. We also used Pitest’s documentation
of its mutation operators [8] to decide which operators to
implement first.

The following is the list of mutation operators currently
supported by Mull. All of the instructions referenced below
can be found in the LLVM IR language manual.

A. Math: Add, Sub, Mul, Div

This group of operators performs mutations of basic arith-
metic operators: ”+” to ”-”, ”-” to ”+”, ”*” to ”/”, ”/” to ”*”.

Math Add replaces an add instruction, which returns the
sum of its two operands, with a sub instruction, which returns
the difference of its two operands. Math Add also works with
the floating equivalent of add instruction: fadd which is
replaced with fsub.

Math Sub operator performs the same kind of mutation as
Math Add but in opposite direction: from sub to add and
fsub to fadd. Math Mul and Div work with mul, fmul
and div, fdiv instructions respectively.

B. Negate Condition

Negate Condition operator works with icmp instruction
(comparison of integer operands) and fcmp instruction (com-
parison of floating-point operands). Both instructions accept
three operands of which ”the first operand is the condition
code indicating the kind of comparison to perform”. This
first operand is a conventional code that represents a type
of comparison, for example: ”unsigned equal” to ”signed
less than”. Negate Condition modifies the code to achieve a
complete negation of a condition: from ”equal” to ”not equal”,
from ”signed less” to ”signed greater than or equal”, etc.

C. Remove Void Function

This operator removes a call to a void function from LLVM
IR code. The void function calls can be represented by two
instructions in LLVM IR: call and invoke. The difference
between these instructions is related to the details of exception
handling and is hidden well behind LLVM IR API making this
difference irrelevant to Mull.

D. Replace Call

This operator replaces a function call, whose return value is
an integer or floating-point scalar value, with an arbitrary value
according to the following simple rule: the function call is
replaced with a value forty-two (42) of a corresponding integer
or floating-point type. Like Remove Void Function operator,
this operator works with call and invoke instructions.

E. Scalar Value Replacement

This operator replaces an integer or floating-point scalar
value with a predetermined value according to the following
simple rule: non-zero value is replaced with a zero value (0) of
the corresponding integer or floating-point type, zero value is
replaced with a value of one (1) of the corresponding integer
or floating-point type. Scalar values can appear as operands
of many different instructions in LLVM IR language: binary
arithmetic instructions like add or mul, comparison instruc-
tions icmp and fcmp, return instruction ret, function call
instructions call and invoke and some others. Scalar Value
operator maintains a list of such instructions that determines
if a particular instruction can be a target of a Scalar Value
mutation.

V. EVALUATION

In this section, we describe our experience of applying
Mull on real-world projects. We focus on ease of integration,
performance, and a practical applicability of Mull, rather than
on concrete results such as found bugs or shallow tests. For
this paper we picked three open-source projects: RODOS [9],
OpenSSL [10] and LLVM [11]. Table I describes some prop-
erties of these projects. The number of lines of code represents
size and scale of a project. However, more representative
metric is a number and an overall weight of bitcode files:
it has a direct impact on performance because all this code
has to be loaded into memory, analyzed, compiled, and linked
together.

Measurements for OpenSSL and LLVM were made on
macOS 10.13 with 16GB of RAM and Intel i7 3.1GHz CPU.
Measurements for RODOS were made on the same machine,
but inside of VirtualBox running Ubuntu 16.04, 32 bit. 4GB
of RAM and two cores of the Intel i7, 3.1GHz were allocated
for the virtual machine.

For this experiment we used three mutation operators: Math
Add (IV-A), Negate Condition (IV-B), and Remove Void
Function (IV-C). All tests were run with the Fail Fast mode
(III-F) and Caching (III-G) enabled. We ran each group of
tests twice: a cold run, without cache in place, and a hot run,
with cache in place.

TABLE I
PROJECTS

Lines Bitcode Bitcode Average time
Project of code files size per test run

RODOS 125,127 32 407 KB 23 ms
OpenSSL 311,293 630 11 MB 42 ms

LLVM 1,324,567 224 242 MB 31 ms

For each project we measure how many tests a test suite has,
how many mutants Mull detects given the mutation operators
mentioned above, total amount of test runs executed during
analysis, and the total execution time for both cold and hot
runs.

A. RODOS

RODOS [9] is a real-time operating system developed by
the German Aerospace Center. It is written in C and C++ and
uses CppUnit test framework [12] for its test suite. Among
several bare-metal platforms, it can be run on Linux and other
POSIX-compliant operating systems.

RODOS has many small test suites, each of
them covering very specific part of the system.
Examples are: matrix4d_test, quaternion_test,
filesystem_test, hal_gpio_test. Each test suite
is designed to run only one single test per compilation: to
run a test one has to compile the test suite enabling a test
by providing a macro definition. We have to change this to
control the test selection at runtime rather than at compile
time. Once the test suite is compiled, it can run either all
tests, or the one specified via command-line arguments
(argv). Original test driver always exits with exit code 0.
To check if tests failed or not one has to either observe the
output or check a test report that is written into XML file.
We have to add a small change here as well: exit code should
represent amount of failed tests. If all tests pass, then exit
code is 0, otherwise some positive number. This is a widely
used approach. RODOS uses Makefiles to build and run its
test suites, we have to change compiler flags (CXXFLAGS) to
emit LLVM Bitcode.

Two more workarounds are required to run Mull against
RODOS. Some parts of the system are written in assembly
so they are compiled directly into machine code. We have to
point Mull to them using object_file_list configura-
tion option. Since RODOS uses CppUnit we also have to point
it to the libcppunit.so via dynamic_library_list
configuration option.

Once these preparations are done, we can run Mull against
RODOS. For this experiment, we pick five test suites based on
amount of tests in each of them. Table II contains the results.

B. OpenSSL

OpenSSL [10] is a well-known implementation of TLS and
SSL protocols. It is written in C. It uses custom test framework
for its tests. OpenSSL has a mix of unit and integration tests.
We have to look at each test suite to identify if it is a unit test
suite or an integration test suite. Test suites with unit tests are

TABLE II
RESULTS FOR RODOS

Test Total time
Test suite Tests Mutants runs Distance (cold / hot)

linkinterfaceuart 11 19 186 2 4s / 2s
stdlib pico 10 36 356 2 5s / 4s

thread 10 57 196 3 5s / 3s
sortedlist 9 16 85 4 2s / 2s

linkinterfacecan 8 18 471 5 19s / 12s

TABLE III
RESULTS FOR OPENSSL

Test Total time
Test suite Tests Mutants runs Distance (cold / hot)
packettest 22 67 173 3 30s / 14s

destest 20 274 1256 3 47s / 29s
test test 19 102 214 4 31s / 17s
igetest 10 118 709 2 29s / 18s

bio enc test 6 708 2667 12 3m8s / 2m45s

simple programs that are compiled into an executable. Each
test suite can only run all tests at once. We have to change
them to run one test based on command line arguments, or to
run all of them if no arguments are given, to preserve original
behavior. We also have to extract information about each test
manually. To set up CustomTestFramework Mull needs
to know which function is a test and which command line
arguments to pass to run this very specific test.

Obtaining LLVM Bitcode is trivial. To compile OpenSSL
one has to invoke configure script to prepare build system.
configure accepts additional parameters that are used as
CFLAGS. We invoke the script by passing -flto to enable
LTO [13], which produces bitcode files instead of object files
as build artifacts. Then we compile test suites of interest and
construct separate configuration files for each of them.

Results of this experiment can be found in Table III.

C. LLVM

The LLVM [11] compiler infrastructure project is the
biggest project we have analyzed so far. LLVM is written in
C++. It uses GoogleTest [14] as a test framework. It has several
unit test suites of various sizes targeting different subsystems
of LLVM. For this experiment, we use ADTTests: a test suite
that covers specific abstract data types used in LLVM such
as arrays, strings, maps, integers, floats, etc. Additionally, in
this test suite, we focus only on normal tests and exclude tests
which are based on Typed Tests feature of GoogleTest that
GoogleTestFinder does not support yet.

Obtaining Bitcode is trivial for LLVM: it has a build setting
that enables LTO [13], which produces bitcode files instead of
object files as build artifacts. We use only one workaround
to get LLVM’s tests running: LLVM JIT does not support
Thread-Local Storage [15] so we have to exclude one source
file that uses TLS from the compilation. Fortunately, this file
is not used in the test suite so its absence does not affect the
analysis.

TABLE IV
RESULTS FOR LLVM

Test Total time
Test suite Tests Mutants runs Dist. (cold / hot)
All Tests 550 11779 60325 25 3h46m / 1h54m
All Tests 550 5508 13601 2 1h52m / 47m46s
APFloat 70 1894 22010 25 41m1s / 18m21s
APFloat 70 361 1622 2 14m13s / 4m32s

StringExtras 5 160 165 7 4m44s / 3m2s
StringExtras 5 93 98 2 4m36s / 2m24s

LLVM is a big project. It this case it is recommended
to launch Mull in Dry Run mode (III-D) to get information
about tested program. Dry run shows that Mull detected 550
tests and found 11779 mutants, it also shows that there are
60325 test runs according to III-F. The report also shows
approximation of execution time: full run may take about 9
hours at maximum. It helps to see the order: hours, not days
in the worst case. The approximation is very pessimistic: Mull
assumes that every mutant fails because of a timeout. In fact,
real execution time was 3 hours 46 minutes.

Table IV shows the results for different configurations. We
use three groups of tests of different size and different mutation
distance (III-A) for each of them to show applicability of Mull
even for big projects. The execution time of almost four hours
on the whole test suite is impractical for iterative development
process as opposed to two minutes for a subset of tests.

VI. CURRENT LIMITATIONS

A. Junk and stray mutations

A mutation can exist in bitcode, but cannot be achieved
by changing original source code. Such mutation is called
junk mutation. The term was first coined by Henry Coles
[16]. A good example of such mutation in C++ is a
std::vector::push_back method call: one line of C++
code produces around 200 LLVM IR instructions. Depending
on mutation operator Mull finds mutations in those instructions
even though there is no equivalent in the original source code.
Some mutation operators require advanced pattern matching to
avoid this issue, for others, we did not find a robust solution
yet.

Another issue is C and C++ code from their standard
libraries. Compiler inlines code from macros and templates
into resulting bitcode. Mull finds mutations in this code as
well, but they are not relevant to a tested program. We call
such mutations stray mutations. Fortunately, there is a simple
workaround: Mull can filter out mutations based on their
location in a source code using exclude_locations con-
figuration option. This approach also helps to avoid mutation
of third-party code.

B. Current limitations of LLVM JIT

Mull uses LLVM JIT from which it gets its power as
well as some of its limitations. The following are two major
limitations we encountered: LLVM JIT does not work with
projects using Thread Local Storage [15], and it does not

support Objective-C Runtime [17]. The latter limitation is the
only reason why Mull does not yet fully support Objective-C
and Swift programming languages. Both problems are solvable
and are waiting for their solution.

VII. FUTURE WORK

There is a lot of work to be done to get Mull closer to
its use in production. Below, we outline the three major (and
most obvious) parts of our work: performance improvements,
integration with modern IDE’s, further exploration of the real-
world projects.

One direction of work is further performance optimizations:
parallelization and even better control over recompilation of
bitcode. Mull still runs only one child process at a time so
the work with multiple child processes is one of the nearest
optimizations we are planning. Recompilation of mutated
function instead of a whole bitcode file that contains it can
improve performance of Mull on projects with large bitcode
files.

Integration with existing IDE’s is yet another important part
of work to make Mull practical for daily use. While Mull
works perfectly as a command-line tool that produces HTML
reports, we also see it natural to be a part of a workflow
provided by the modern IDE’s.

Another direction of work is a further exploration of the
real-world projects that will drive the implementation of new
test framework adapters like Catch for C++, better support
of programming languages like Rust and Swift, running Mull
on BSD and Windows systems. In this regard, we especially
look forward to the proper support of Objective-C Runtime by
LLVM JIT because it will open Mull the door to the world of
desktop and mobile application development on macOS and
iOS platforms.

We are aware that other mutation testing tools for compiled
programming languages exist [18] and we assume that a proper
comparison between Mull and these tools should be a topic
of separate research.

VIII. CONCLUSION

Our choice of LLVM as a base for an implementation of a
mutation testing tool was based on an experiment with LLVM
IR and LLVM JIT libraries that had produced results superior
to those from any of our previous attempts to implement a
solution working on source code or AST levels. So far, we
did not encounter a single critical problem that would turn
us away from our decision to base Mull on LLVM with its
intermediate language and infrastructure. Quite to the opposite,
Mull satisfies all criteria that we consider important for an
implementation of mutation testing tool. It has a great number
of applications and a large room for further improvement.

To test Mull on real-world projects and to explore possible
limitations of our approach we applied it to as many different
projects, programming languages, test frameworks and operat-
ing systems as was possible with our capacity. The following
is the list of the projects we analyzed:

• LLVM (C/C++, GoogleTest, macOS)

• OpenSSL (C/C++, custom test suite, macOS)
• RODOS (C/C++, CppUnit, Linux)
• openlibm (C, custom test suite, macOS)
• newlib’s libm (C, custom test suite, Linux)
• fmt (C++, GoogleTest, macOS)
• CryptoSwift (Swift, XCTest, Linux)
• rustc-demangle (Rust, Rust’s test framework, macOS)
• Mull (autoanalysis) (C++, GoogleTest, macOS)
Our long-term goal is to get Mull to the point where it can

be used by industry as a drop-in solution for mutation testing.
Also, we expect Mull to find a use in research, including
interaction with other tools and approaches, that would find
solutions to speed up the normally slow process of mutation
testing with automatic test generation.

ACKNOWLEDGEMENTS

We thank Henry Coles and Markus Schirp for fruitful
discussions and their helpful advice at the early stage of
development of Mull.

We thank Yue Jia and Mark Harman for their Analysis and
Survey [19] that gave us a theoretical background for our work.

We thank Tobias Grosser for the hint about LTO option that
helps to get LLVM Bitcode from a project’s source code.

REFERENCES

[1] “Github topics: Mutation testing.” [Online]. Available: https://github.
com/topics/mutation-testing

[2] H. Coles, “Pitest.” [Online]. Available: http://pitest.org
[3] M. Schirp, “Mutant.” [Online]. Available: https://github.com/mbj/mutant
[4] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong

program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed
and Runtime Optimization, ser. CGO ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 75–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=977395.977673

[5] A. Denisov and S. Pankevich, “Mull.” [Online]. Available: https:
//github.com/mull-project/mull

[6] “Apache license,” Apache Software Foundation. [Online]. Available:
https://www.apache.org/licenses/LICENSE-2.0

[7] “LLVM Language Reference Manual: Instruction Reference.”
[Online]. Available: https://releases.llvm.org/3.9.0/docs/LangRef.html#
instruction-reference

[8] H. Coles, “Pitest: Available mutation operations.” [Online]. Available:
http://pitest.org/quickstart/mutators/

[9] “RODOS.” [Online]. Available: https://en.wikipedia.org/wiki/Rodos
(operating system)

[10] “OpenSSL.” [Online]. Available: https://www.openssl.org
[11] “LLVM.” [Online]. Available: https://llvm.org
[12] “CppUnit.” [Online]. Available: https://sourceforge.net/projects/cppunit/
[13] “LLVM Link Time Optimization: Design and Implementation.”

[Online]. Available: https://llvm.org/docs/LinkTimeOptimization.html
[14] “GoogleTest.” [Online]. Available: https://github.com/google/googletest
[15] “MCJIT TLS support: Cannot select: X86ISD::WrapperRIP.” [Online].

Available: https://bugs.llvm.org/show bug.cgi?id=21431
[16] H. Coles, “Junk Mutations.” [Online]. Available: https://twitter.com/

0hjc/status/478896988784963584
[17] “[llvm-dev] Is it possible to execute Objective-C code via LLVM

JIT?” [Online]. Available: http://lists.llvm.org/pipermail/llvm-dev/
2016-October/106218.html

[18] P. Delgado-Prez, I. Medina-Bulo, F. Palomo-Lozano, A. Garca-
Domnguez, and J. Domnguez-Jimnez, “Assessment of class mutation
operators for c++ with the mucpp mutation system,” vol. 81, p. 169184,
01 2017.

[19] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
no. 5, pp. 649–678, Sept 2011.

